Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase.

نویسندگان

  • Md Faiz Ahmad
  • Qun Wan
  • Shalini Jha
  • Edward Motea
  • Anthony Berdis
  • Chris Dealwis
چکیده

Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-2'-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogues with dATP predicted that they would inhibit hRR activity by binding to its allosteric sites. In silico analysis and in vitro characterization identified one particular analogue designated as 5-nitro-indolyl-2'-deoxyribose triphosphate (5-NITP) that inhibits hRR. 5-NITP binding to hRR was determined by isothermal titration calorimetry. X-ray crystal structure of 5-NITP bound to RR1 was determined. Cell-based studies showed the anti-cancer effects of the corresponding non-natural nucleoside against leukemia cells. 5-NITP binds to hRR with micromolar affinity. Binding does not induce hexamerization of hRR1 like dATP, the native allosteric inhibitor of hRR that binds with high affinity to the A-site. The X-ray crystal structure of Saccharomyces cerevisiae RR1-5-NITP (ScRR1-5-NITP) complex determined to 2.3 Å resolution shows that 5-NITP does not bind to the A-site but rather at the S-site. Regardless, 5-nitro-indolyl-2'-deoxynucleoside (5-NIdR) produces cytostatic and cytotoxic effects against human leukemia cells by altering cell-cycle progression. Our studies provide useful insights toward developing new inhibitors with improved potency and efficacy against hRR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Discovery Evaluating the Therapeutic Potential of a Non-Natural Nucleotide That Inhibits Human Ribonucleotide Reductase

Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-20-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogues with dAT...

متن کامل

Investigation of solvent effect on the active site energy of Carbonic Anhydrase and Ribonucleotide Reductase

Enzymes catalyze many biological reactions. The rates of chemical reaction in the presence ofenzymes are, in some cases, accelerated more than 10 orders of magnitude relative to thecorresponding rates in solution.In this paper a comparison between optimized structures of two enzyme molecules in aspect ofenergy and dipole moment in different conditions including presence of metallic ion, without...

متن کامل

Therapeutic potential of Paclitaxel against COVID-19

The coronavirus disease-2019(COVID-19) was reported in Wuhan, China, in late December 2019 and soon became the most serious global health challenge due to high rate of human-to-human transmission. The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), is a single-stranded RNA virus and belongs to the large Coronaviridae family. Paclitaxel, an antineoplastic drug extracted from the Tax...

متن کامل

Targeting of the purine biosynthesis host cell pathway enhances the activity of tenofovir against sensitive and drug-resistant HIV-1.

BACKGROUND Targeting host-cell pathways to increase the potency of nucleoside/nucleotide analog reverse transcriptase inhibitors (NRTIs) is an important strategy for clinical investigation. Resveratrol is a natural product that inhibits cellular ribonucleotide reductase, prolonging the S phase of the cell cycle and preferentially lowering dATP levels. METHODS We performed in vitro evaluation ...

متن کامل

In vivo function of the murid herpesvirus-4 ribonucleotide reductase small subunit

The difficulty of eliminating herpesvirus carriage makes host entry a key target for infection control. However, its viral requirements are poorly defined. Murid herpesvirus-4 (MuHV-4) can potentially provide insights into gammaherpesvirus host entry. Upper respiratory tract infection requires the MuHV-4 thymidine kinase (TK) and ribonucleotide reductase large subunit (RNR-L), suggesting a need...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2012